phenopath is an R tool to estimate pseud-time trajectories in single-cell RNA-seq data. The phenopath algorithm uses a new statistical approach, a mixture regression-latent variable model, which can detect known and unique covariate-pseudo-time interaction influences.
Gene expression; RNA-seq
Campbell KR, Yau C "Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data." Nat Commun. 2018 Jun 22;9(1):2442. https://doi.org/10.1038/s41467-018-04696-6
PMID: 29934517
PMCID: PMC6015076
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J1, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M "Orchestrating high-throughput genomic analysis with Bioconductor." Nat Methods. 2015 Feb;12(2):115-21. https://doi.org/10.1038/nmeth.3252
PMID: 25633503
PMCID: PMC4509590
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. "Bioconductor: open software development for computational biology and bioinformatics." Genome Biol. 2004;5(10):R80. Epub 2004 Sep 15. https://doi.org/10.1186/gb-2004-5-10-r80
PMID: 15461798
PMCID: PMC545600
If you find errors, please report here.
SECTIONS
TutorialsFind thousands of Bioinformatics and Life Science software tools and databases in the newly launched
Ads